FONTARGEN HTL 7

Nickel-based high-temperature brazing alloy

DIN EN ISO 17672: Ni 710 DIN EN 1044: NI 107 DIN 8513: L-Ni7

EN ISO 3677: B-Ni76CrP-890

AWS: BNi-7

Compositi	on, typical	analysis (% w/w)	:

Ċr	P	Ċ	Fé	Si	В	Ni
14	10.1	< 0.06	< 0.2	< 0.1	< 0.01	Remainder

Mechanical and physical properties:

Working temperature: 927 - 1093 °C, rec. brazing temp. 980 °C

Melting range: 890 °C

Gap width: up to 0.05 mm Viscosity range: 60.000 - 80.000 mPas

Metal content: ≈ 90 % w/w Oxidationresistant up to: 855 °C

Characteristics / Applications:

The brazing alloy HTL 7 is used for thin-walled tubes, honeycomb-structures as well as assemblies for the nuclear technology. It is easy to dispense and dries slowly on air. It is very well suited for high-tensile, vacuum-sealed, high-temperature- and corrosionresistant joints. Suited for parts which come in contact with food. The ductility of the brazing joint can be enhanced by an extension of the exposure time. Iron-, nickel-, cobalt and special materials are applicable. Good flowing properties at low diffusibility.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace cracked NH ₃	Inert-gas continuous furnace Hydrogen	Vacuum furnace
\boxtimes	\boxtimes	\boxtimes

Availability:

Paste HTL 7 AP	Powder HTL 7
	\boxtimes

13/10/JL/1