

Avesta FCW 308L/MVR Cryo

GMAW flux cored wire, high alloyed, special application

Classification		
EN ISO 17633-A	EN ISO 17633-B	AWS A5.22
T 19 9 L P M/C 1	-	E308LT1-4/-1

Characteristics and typical fields of application

Avesta FCW 308L/MVR Cryo is designed for welding 1.4301/ASTM 304 type stainless steels, primarily for use in low temperature applications. The carefully controlled chemical composition gives a weld metal with a ferrite content in the range of 3 – 8 FN (WRC-92) and very good toughness down to -196°C as specified for LNG applications.

Avesta FCW 308L/MVR Cryo should be welded using direct current positive polarity (DC+) with a recommended wire stick-out of 15 – 20 mm.

Corrosion resistance:

Corresponding to 1.4301/ASTM 304, i.e. very good under fairly severe conditions, e.g. in oxidising acids and cold or dilute reducing acids.

Base Materials						
Outokumpu	EN	ASTM	BS	NF	SS	
4301	1.4301	304	304S31	Z7 CN 18-09	2333	
4307	1.4307	304L	304S11	Z3 CN 18-10	2352	
4311	1.4311	304LN	304S61	Z3 CN 18-10 Az	2371	
4541	1.4541	321	321S31	Z6 CNT 18-10	2337	

Typical analysis of all-weld metal (wt%)						
	С	Si	Mn	Cr	Ni	
wt-%	0.020	0.6	1.2	19.0	10.3	

Mechanical properties of all-weld metal						
Heat- treat- ment	Yield strength R _e N/mm ²	Tensile strength R _m N/mm ²	Elongation (L ₀ =5d ₀)	Impact work ISO-V KV J		Hardness
	MPa	MPa	%	+20 °C	-196°C	НВ
u	390	550	40	80	45	200

u untreated, as-welded – shielding gas Argon + 18 % CO₂

0.		
U	peratir	ng data

÷111	_	shielding gases: Ar + 15 - 25% CO ₂	re-drying if necessary: 150°C / 24 hrs	amps A 125 – 280	voltage V 20 – 34	ø (mm) 1.2
/ 111		100 % CO ₂	100 0 / 24 1113			

Ar + 15 - 25% CO₂ offers the best weldability, but 100% CO₂ can be also used (voltage should be increased by 2V). Gas flow rate 20 - 25 l/min.

Approvals

All information provided is based upon careful investigation and intensive research. However, we do not assume any liability for correctness and information is subject to change without notice.