

Avesta FCW-2D P5

GMAW flux cored wire, high alloyed, special application

Classification		
EN ISO 17633-A	EN ISO 17633-B	AWS A5.22
T 23 12 2 L R M/C3	-	E309LMoT0-4/-1

Characteristics and typical fields of application

Avesta FCW-2D P5 is a molybdenum alloyed wire of the 309MoL type, primarily designed for welding dissimilar joints between stainless steels and low-alloy steels. It can also be used for overlay welding, providing an 18 Cr 8 Ni 2 Mo deposit from the first layer.

Avesta FCW-2D P5 provides excellent weldability in flat as well as horizontal-vertical position. Welding in vertical-up and overhead positions is preferably done using FCW P5-PW.

Avesta FCW-2D P5 should be welded using direct current positive polarity (DC+) with a recommended wire stick-out of 15-20 mm.

Corrosion resistance:

Superior to type 316L fillers. When used for overlay welding on mild steel a corrosions resistance equivalent to that of 1.4401/316 is obtained already in the first layer.

Base Materials								
Outokumpu	EN	ASTM	BS	NF	SS			

Avesta P5 is primarily used when surfacing unalloyed or low-alloy steels and when joining molybdenum-alloyed stainless and carbon steels.

Typical analysis of all-weld metal (wt%)							
	С	Si	Mn	Cr	Ni	Мо	
wt-%	0.025	0.7	1.4	22.9	12.6	2.7	

Mechanical properties of all-weld metal						
Heat- treat- ment	Yield strength R _e N/mm ²	Tensile strength R _m N/mm ²	Elongation (L ₀ =5d ₀)	Impact work ISO-V KV J		Hardness
	MPa	MPa	%	+20 °C		НВ
u	500	700	30	55		220

u untreated, as-welded – shielding gas Argon + 18 % CO₂

Operating data								
X + + 1	Polarity	shielding gases:	re-drying if	amps A	voltage V	ø (mm)		
← .	DC (+)	Ar + 15 – 25% CO ₂	necessary:	125 – 280	20 – 34	1.2		
/		100 % CO ₂	150°C / 24 hrs	200 - 350	25 - 35	16		

Ar + 15 – 25% CO_2 offers the best weldability, but 100% CO_2 can be also used (voltage should be increased by 2V). Gas flow rate 20 – 25 l/min.

Approvals